bilby.bilby_mcmc.chain.Chain
- class bilby.bilby_mcmc.chain.Chain(initial_sample, burn_in_nact=1, thin_by_nact=1, fixed_discard=0, autocorr_c=5, min_tau=1, fixed_tau=None, tau_window=None, block_length=100000)[source]
Bases:
object
- __init__(initial_sample, burn_in_nact=1, thin_by_nact=1, fixed_discard=0, autocorr_c=5, min_tau=1, fixed_tau=None, tau_window=None, block_length=100000)[source]
Object to store a single mcmc chain
- Parameters:
- initial_sample: bilby.bilby_mcmc.chain.Sample
The starting point of the chain
- burn_in_nact, thin_by_nactint (1, 1)
The number of autocorrelation times (tau) to discard for burn-in and the multiplicative factor to thin by (thin_by_nact < 1). I.e burn_in_nact=10 and thin_by_nact=1 will discard 10*tau samples from the start of the chain, then thin the final chain by a factor of 1*tau (resulting in independent samples).
- fixed_discard: int (0)
A fixed minimum number of samples to discard (can be used to override the burn_in_nact if it is too small).
- autocorr_c: float (5)
The step size of the window search used by emcee.autocorr when estimating the autocorrelation time.
- min_tau: int (1)
A minimum value for the autocorrelation time.
- fixed_tau: int (None)
A fixed value for the autocorrelation (overrides the automated autocorrelation time estimation). Used in testing.
- tau_window: int (None)
Only calculate the autocorrelation time in a trailing window. If None (default) this method is not used.
- block_length: int
The incremental size to extend the array by when it runs out of space.
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(initial_sample[, burn_in_nact, ...])Object to store a single mcmc chain
append
(sample)get_1d_array
(key)key_to_idx
(key)plot
([outdir, label, priors, all_samples])Attributes
current_sample
fixed_discard
This calculates a minimum index from which to discard samples
minimum_index_adapt
minimum_index_proposal
nsamples
nsamples_last
random_sample
samples
The maximum ACT over all parameters
Calculate a dictionary of tau (ACT) for every parameter
Return the last-calculated tau if it exists, else inf
Calculate tau forcing a recalculation (no cached tau)
thin
- property minimum_index
This calculates a minimum index from which to discard samples
A number of methods are provided for the calculation. A subset are switched off (by if False statements) for future development
- property tau
The maximum ACT over all parameters
- property tau_dict
Calculate a dictionary of tau (ACT) for every parameter
- property tau_last
Return the last-calculated tau if it exists, else inf
- property tau_nocache
Calculate tau forcing a recalculation (no cached tau)