bilby.core.likelihood.Multinomial
- class bilby.core.likelihood.Multinomial(data, n_dimensions, base='parameter_')[source]
Bases:
Likelihood
Likelihood for system with N discrete possibilities.
- __init__(data, n_dimensions, base='parameter_')[source]
- Parameters:
- data: array-like
The number of objects in each class
- n_dimensions: int
The number of classes
- base: str
The base of the parameter labels
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(data, n_dimensions[, base])- Parameters:
Since n - 1 parameters are sampled, the last parameter is 1 - the rest
Difference between log likelihood and noise log likelihood
Our null hypothesis is that all bins have probability 1 / nbins, i.e., no bin is preferred over any other.
Attributes
marginalized_parameters
meta_data