bilby.core.prior.analytical.FermiDirac
- class bilby.core.prior.analytical.FermiDirac(sigma, mu=None, r=None, name=None, latex_label=None, unit=None)[source]
Bases:
Prior
- __init__(sigma, mu=None, r=None, name=None, latex_label=None, unit=None)[source]
A Fermi-Dirac type prior, with a fixed lower boundary at zero (see, e.g. Section 2.3.5 of [1]). The probability distribution is defined by Equation 22 of [1].
- Parameters:
- sigma: float (required)
The range over which the attenuation of the distribution happens
- mu: float
The point at which the distribution falls to 50% of its maximum value
- r: float
A value giving mu/sigma. This can be used instead of specifying mu.
- name: str
See superclass
- latex_label: str
See superclass
- unit: str
See superclass
References
- __call__()[source]
Overrides the __call__ special method. Calls the sample method.
- Returns:
- float: The return value of the sample method.
Methods
__init__
(sigma[, mu, r, name, latex_label, unit])A Fermi-Dirac type prior, with a fixed lower boundary at zero (see, e.g. Section 2.3.5 of [1]).
cdf
(val)Generic method to calculate CDF, can be overwritten in subclass
from_json
(dct)from_repr
(string)Generate the prior from its __repr__
get_instantiation_dict
()is_in_prior_range
(val)Returns True if val is in the prior boundaries, zero otherwise
ln_prob
(val)Return the log prior probability of val.
prob
(val)Return the prior probability of val.
rescale
(val)'Rescale' a sample from the unit line element to the appropriate Fermi-Dirac prior.
sample
([size])Draw a sample from the prior
to_json
()Attributes
boundary
Returns True if the prior is fixed and should not be used in the sampler.
Latex label that can be used for plots.
If a unit is specified, returns a string of the latex label and unit
maximum
minimum
unit
width
- property is_fixed
Returns True if the prior is fixed and should not be used in the sampler. Does this by checking if this instance is an instance of DeltaFunction.
- Returns:
- bool: Whether it’s fixed or not!
- is_in_prior_range(val)[source]
Returns True if val is in the prior boundaries, zero otherwise
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- np.nan
- property latex_label
Latex label that can be used for plots.
Draws from a set of default labels if no label is given
- Returns:
- str: A latex representation for this prior
- property latex_label_with_unit
If a unit is specified, returns a string of the latex label and unit
- ln_prob(val)[source]
Return the log prior probability of val.
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- Union[float, array_like]: Log prior probability of val
- prob(val)[source]
Return the prior probability of val.
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- float: Prior probability of val
- rescale(val)[source]
‘Rescale’ a sample from the unit line element to the appropriate Fermi-Dirac prior.
- Parameters:
- val: Union[float, int, array_like]
- This maps to the inverse CDF. This has been analytically solved for this case,
- see Equation 24 of [Re282ecdc1327-1]_.
References
[1]M. Pitkin, M. Isi, J. Veitch & G. Woan, arXiv:1705.08978v1, 2017.