bilby.core.sampler.proposal.EnsembleWalk

class bilby.core.sampler.proposal.EnsembleWalk(random_number_generator=<built-in method uniform of numpy.random._generator.Generator object>, n_points=3, priors=None, **random_number_generator_args)[source]

Bases: JumpProposal

__init__(random_number_generator=<built-in method uniform of numpy.random._generator.Generator object>, n_points=3, priors=None, **random_number_generator_args)[source]

An ensemble walk

Parameters:
random_number_generator: func, optional

A random number generator. Default is random.random

n_points: int, optional

Number of points in the ensemble to average over. Default is 3.

priors:

See superclass

random_number_generator_args:

Additional keyword arguments for the random number generator

__call__(sample, **kwargs)[source]

A generic wrapper for the jump proposal function

Parameters:
args: Arguments that are going to be passed into the proposal function
kwargs: Keyword arguments that are going to be passed into the proposal function
Returns:
dict: A dictionary with the new samples. Boundary conditions are applied.

Methods

__init__([random_number_generator, ...])

An ensemble walk

get_center_of_mass(subset)