bilby.gw.conversion.generate_all_bns_parameters
- bilby.gw.conversion.generate_all_bns_parameters(sample, likelihood=None, priors=None, npool=1)[source]
From either a single sample or a set of samples fill in all missing BNS parameters, in place.
Since we assume BNS waveforms are aligned, component spins won’t be calculated.
- Parameters:
- sample: dict or pandas.DataFrame
Samples to fill in with extra parameters, this may be either an injection or posterior samples.
- likelihood: bilby.gw.likelihood.GravitationalWaveTransient, optional
GravitationalWaveTransient used for sampling, used for waveform and likelihood.interferometers.
- priors: dict, optional
Dictionary of prior objects, used to fill in non-sampled parameters.
- npool: int, (default=1)
If given, perform generation (where possible) using a multiprocessing pool