bilby.gw.prior.UniformInComponentsMassRatio
- class bilby.gw.prior.UniformInComponentsMassRatio(minimum, maximum, name='mass_ratio', latex_label='$q$', unit=None, boundary=None, equal_mass=False)[source]
Bases:
PriorPrior distribution for chirp mass which is uniform in component masses.
This is useful when chirp mass and mass ratio are sampled while the prior is uniform in component masses.
\[p(q) \propto \frac{(1 + q)^{2/5}}{q^{6/5}}\]Notes
This prior is intended to be used in conjunction with the corresponding
bilby.gw.prior.UniformInComponentsChirpMass.- __init__(minimum, maximum, name='mass_ratio', latex_label='$q$', unit=None, boundary=None, equal_mass=False)[source]
- Parameters:
- minimumfloat
The minimum of mass ratio
- maximumfloat
The maximum of mass ratio
- name: see superclass
- latex_label: see superclass
- unit: see superclass
- boundary: see superclass
- equal_mass: bool
Whether the likelihood being considered is expected to peak at equal masses. If True, the mapping described in Appendix A of arXiv:2111.13619 is used in the
rescalemethod. default=False
- __call__()[source]
Overrides the __call__ special method. Calls the sample method.
- Returns:
- float: The return value of the sample method.
Methods
__init__(minimum, maximum[, name, ...])- Parameters:
cdf(val)Generic method to calculate CDF, can be overwritten in subclass
from_json(dct)from_repr(string)Generate the prior from its __repr__
get_instantiation_dict()is_in_prior_range(val)Returns True if val is in the prior boundaries, zero otherwise
ln_prob(val)Return the prior ln probability of val, this should be overwritten
prob(val)Return the prior probability of val, this should be overwritten
rescale(val)'Rescale' a sample from the unit line element to the prior.
sample([size])Draw a sample from the prior
to_json()Attributes
boundaryReturns True if the prior is fixed and should not be used in the sampler.
Latex label that can be used for plots.
If a unit is specified, returns a string of the latex label and unit
maximumminimumunitwidth- property is_fixed
Returns True if the prior is fixed and should not be used in the sampler. Does this by checking if this instance is an instance of DeltaFunction.
- Returns:
- bool: Whether it’s fixed or not!
- is_in_prior_range(val)[source]
Returns True if val is in the prior boundaries, zero otherwise
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- np.nan
- property latex_label
Latex label that can be used for plots.
Draws from a set of default labels if no label is given
- Returns:
- str: A latex representation for this prior
- property latex_label_with_unit
If a unit is specified, returns a string of the latex label and unit
- ln_prob(val)[source]
Return the prior ln probability of val, this should be overwritten
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- np.nan
- prob(val)[source]
Return the prior probability of val, this should be overwritten
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- np.nan