bilby.gw.source.binary_black_hole_frequency_sequence
- bilby.gw.source.binary_black_hole_frequency_sequence(frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1, phi_12, a_2, tilt_2, phi_jl, theta_jn, phase, **kwargs)[source]
A Binary Black Hole waveform model using lalsimulation. This generates a waveform only on specified frequency points. This is useful for likelihood requiring waveform values at a subset of all the frequency samples. For example, this is used for MBGravitationalWaveTransient.
- Parameters:
- frequency_array: array_like
The input is ignored.
- mass_1: float
The mass of the heavier object in solar masses
- mass_2: float
The mass of the lighter object in solar masses
- luminosity_distance: float
The luminosity distance in megaparsec
- a_1: float
Dimensionless primary spin magnitude
- tilt_1: float
Primary tilt angle
- phi_12: float
Azimuthal angle between the two component spins
- a_2: float
Dimensionless secondary spin magnitude
- tilt_2: float
Secondary tilt angle
- phi_jl: float
Azimuthal angle between the total binary angular momentum and the orbital angular momentum
- theta_jn: float
Angle between the total binary angular momentum and the line of sight
- phase: float
The phase at reference frequency or peak amplitude (depends on waveform)
- kwargs: dict
Required keyword arguments - frequencies:
ndarray of frequencies at which waveforms are evaluated
Optional keyword arguments - waveform_approximant - reference_frequency - catch_waveform_errors - pn_spin_order - pn_tidal_order - pn_phase_order - pn_amplitude_order - mode_array:
Activate a specific mode array and evaluate the model using those modes only. e.g. waveform_arguments = dict(waveform_approximant=’IMRPhenomHM’, mode_array=[[2,2],[2,-2]) returns the 22 and 2-2 modes only of IMRPhenomHM. You can only specify modes that are included in that particular model. e.g. waveform_arguments = dict(waveform_approximant=’IMRPhenomHM’, mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the 55 modes are not included in this model. Be aware that some models only take positive modes and return the positive and the negative mode together, while others need to call both. e.g. waveform_arguments = dict(waveform_approximant=’IMRPhenomHM’, mode_array=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM. However, waveform_arguments = dict(waveform_approximant=’IMRPhenomXHM’, mode_array=[[2,2],[4,-4]]) returns the 22 and 4-4 of IMRPhenomXHM.
- Returns:
- dict: A dictionary with the plus and cross polarisation strain modes